
Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Bio-optical discrimination of diatoms from other phytoplankton in the
surface ocean: Evaluation and refinement of a model for the Northwest
Atlantic

Sasha J. Kramera,b,c,⁎, Collin S. Roeslerb, Heidi M. Sosikc

a Interdepartmental Graduate Program in Marine Science, University of California Santa Barbara, Santa Barbara, CA, United States of America
bDepartment of Earth and Oceanographic Science, Bowdoin College, Brunswick, ME, United States of America
c Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America

A R T I C L E I N F O

Keywords:
Phytoplankton
Community structure
Ocean color
Diatoms

A B S T R A C T

Diatoms dominate global silica production and export production in the ocean; they form the base of productive
food webs and fisheries. Thus, a remote sensing algorithm to identify diatoms has great potential to describe
ecological and biogeochemical trends and fluctuations in the surface ocean. Despite the importance of detecting
diatoms from remote sensing and the demand for reliable methods of diatom identification, there has not been a
systematic evaluation of algorithms that are being applied to this end. The efficacy of these models remains
difficult to constrain in part due to limited datasets for validation. In this study, we test a bio-optical algorithm
developed by Sathyendranath et al. (2004) to identify diatom dominance from the relationship between ratios of
remote sensing reflectance and chlorophyll concentration. We evaluate and refine the original model with data
collected at the Martha's Vineyard Coastal Observatory (MVCO), a near-shore location on the New England shelf.
We then validated the refined model with data collected in Harpswell Sound, Maine, a site with greater optical
complexity than MVCO. At both sites, despite relatively large changes in diatom fraction (0.8–82% of chlor-
ophyll concentration), the magnitude of variability in optical properties due to the dominance or non-dominance
of diatoms is less than the variability induced by other absorbing and scattering constituents of the water. While
the original model performance was improved through successive re-parameterizations and re-formulations of
the absorption and backscattering coefficients, we show that even a model originally parameterized for the
Northwest Atlantic and re-parameterized for sites such as MVCO and Harpswell Sound performs poorly in dis-
criminating diatom-dominance from optical properties.

1. Introduction

Phytoplankton comprise only 0.2% of photosynthetically active
biomass on Earth, yet they are responsible for half of global primary
production (Behrenfeld and Falkowski, 1997; Falkowski et al., 1998;
Field et al., 1998). In addition to forming the base of the marine food
web, these organisms represent an essential source of elemental com-
pounds and nutrients to the ocean (Redfield, 1934; Arrigo, 2005). There
are thousands of known phytoplankton species, but the expansive
taxonomic diversity of phytoplankton can be simplified by combining
groups of species according to their functional or biogeochemical roles
in an ecosystem (Le Quéré et al., 2005). The diatoms comprise a major
group of phytoplankton: despite physiological and morphological dif-
ferences between species, all diatoms contribute to oceanic silica

production. As the phytoplankton group that contributes the most to
phytoplankton carbon, diatoms efficiently support higher trophic levels
and dominate export production in the global ocean (Cushing, 1989;
Smetacek, 1999). Thus, understanding the distribution and abundance
of diatoms within broader phytoplankton communities is essential to
quantifying the impacts of this functional group on macronutrient cy-
cles, trophic transfer, carbon export, and fisheries (Legendre, 1990;
Arrigo, 2005; Falkowski and Oliver, 2007; Guidi et al., 2009).

Detecting the distribution of diatoms is difficult, however, as many
factors confound the direct sampling of global phytoplankton commu-
nities. Developing in situ methods for sampling phytoplankton on large
scales represents a logistical and financial challenge that can be pro-
hibitive for answering questions about the distributions and environ-
mental impacts of different phytoplankton functional groups. Recently,
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there has been a great deal of interest in developing methods to use
satellite-based ocean color remote sensors to study phytoplankton di-
versity on broad spatial and temporal scales in the surface ocean. These
methods exploit spectral differences in remote sensing data to retrieve
properties of the phytoplankton community (IOCCG, 2014 and refer-
ences therein; Bracher et al., 2017; Mouw et al., 2017). Some bio-op-
tical algorithms target phytoplankton size structure (e.g., Ciotti et al.,
2002; Devred et al., 2006; Uitz et al., 2006; Kostadinov et al., 2009) or
seek to identify multiple phytoplankton types at once (e.g., Alvain et al.,
2008; Hirata et al., 2008; Nair et al., 2008; Bracher et al., 2009). Other
models work to distinguish one dominant phytoplankton type from all
other phytoplankton (e.g., Gordon et al., 2001; Westberry and Siegel,
2006).

One such algorithm is presented in Sathyendranath et al. (2004).
This algorithm (hereafter denoted as S04) uses two curves of remote
sensing reflectance ratios, R(λ1)/R(λ2), computed as a function of
chlorophyll-a concentration to distinguish between diatom-dominated
surface ocean waters and waters containing mixed phytoplankton spe-
cies (Fig. S1). The upshot of this model is that, for a given chlorophyll
concentration, diatom-dominated waters will appear bluer compared to
those dominated by a mixed phytoplankton composition.

We reconstructed the S04 model from multiple sources as described
in detail in the Supplementary material (Section S1). In brief, the au-
thors built a forward model of remote sensing reflectance as a function
of absorption and scattering spectra. Inherent in this forward model are
spectral differences in the phytoplankton absorption coefficients that
reflect differences in the optical signatures of diatoms compared to all
other phytoplankton groups. Variations in phytoplankton size, pigment
composition and density, and the degree of pigment packaging within
cells give phytoplankton groups distinct optical signatures that may
affect the water-leaving radiance signal detected by satellites (Morel
and Bricaud, 1981; Roesler et al., 1989; Bidigare et al., 1989; Hoepffner
and Sathyendranath, 1993; Sosik and Mitchell, 1994; Ulloa et al.,
1994). The model contains terms for absorption and scattering by pure
seawater, absorption by yellow matter, and scattering by phyto-
plankton and other particles. The S04 model relies on an inherent op-
tical property (IOP)-based approximation to the radiative transfer
equation to compute reflectance ratio curves (Fig. S1). In the forward
component of the model, absorption and scattering by phytoplankton
and other particles and absorption by yellow matter all vary as a
function of chlorophyll-a and thus are biomass-dependent parameters—
however, as the forward model produces two reflectance ratios for
diatom-dominated and mixed phytoplankton groups at each chlor-
ophyll concentration, the model is considered radiance-based rather
than abundance-based (in the terminology reviewed by Mouw et al.,
2017; for full consideration of this issue, please see the Discussion).

The S04 model was originally designed for application in the
Northwest Atlantic Zone, which is an oceanographic region that en-
compasses several biogeographic provinces (Longhurst et al., 1995;
Sathyendranath et al., 1995; Longhurst, 1998). Many of the samples
used to develop the model were collected from the Northwest Coastal
Shelf province (Sathyendranath et al., 1995; Sathyendranath et al.,
2004; Platt et al., 2005). This model has been implemented several
times in the region for which it was developed, but no further evalua-
tion of the model performance has been published to date (Platt et al.,
2005; Son et al., 2007; Zhai et al., 2008; Platt et al., 2010; Trzcinski
et al., 2013; Budge et al., 2014). Sathyendranath et al. (2004) suggest
that the algorithm should be modified to reflect local conditions before
application in other regions due to variations in the optical properties of
diatoms. Accordingly, when the model was applied in the waters off the
coast of Chile, Jackson et al. (2011) empirically tuned both the
threshold of pigment-based diatom identification and the coefficients
for the modeled phytoplankton absorption curves to match their mea-
sured pigment concentration and phytoplankton absorption data. The
regionally-tuned model correctly identified the phytoplankton com-
munity as mixed or diatom-dominated at seven stations while the

original model intended for the Northwest Atlantic misidentified two of
the diatom-dominated stations as mixed (Jackson et al., 2011). Notably,
however, this reported performance is not an independent validation
since the same observations were used for model tuning.

Arguably, the ability to identify diatoms from ocean color remote
sensing data would enhance current knowledge of the ecology and
biogeochemistry of the surface ocean, and applications of the S04 al-
gorithm go beyond simply identifying the presence or absence of dia-
toms at a given place and time. This model has been invoked in studies
examining the power of hurricanes to shift phytoplankton community
structure and nutrient concentration following a physical overturning
(Son et al., 2007). The model has also been applied to investigate
trophic exchange in the North Atlantic: the presence of diatoms may
explain trends in cod and haddock recruitment to the coastal shelf re-
gion (Trzcinski et al., 2013). Similarly, in identifying the relative
fraction of diatoms in the surface ocean, the model was used to estimate
the total concentration of omega-3 fatty acids in the Northwest Atlantic
Ocean (Budge et al., 2014). Thus, this remote sensing algorithm to
identify diatoms (and others like it) is already being used to interpret
ecological and biogeochemical trends and fluctuations in the surface
ocean. However, without proper validation, it is difficult to identify the
significance or uncertainties associated with a model output before it is
used for other applications.

Most bio-optical models lack sufficient validation metrics or vali-
dation data products (Anderson, 2005; Bracher et al., 2017; Mouw
et al., 2017). Complete validation of a bio-optical model requires a
multifaceted independent dataset: IOP data (absorption and back-
scattering by seawater constituents), radiometry, and means of asses-
sing the phytoplankton community composition directly rather than by
proxy. Complete validation datasets are rare because these measure-
ments are difficult to obtain, particularly on concurrent space and time
scales. In the S04 model development, the authors validated their al-
gorithm outputs with one year of data that was excluded from the da-
taset used to construct the model. The algorithm correctly identified
seven out of ten validation stations as either diatom-dominated or
containing mixed phytoplankton taxa. Considering that diatoms often
dominate microplankton, Mouw and Yoder (2010) compared the
output of the S04 model to the outputs of their bio-optical algorithm to
identify the fraction of microplankton in the surface ocean. The S04
model outputs predicted diatom dominance in up to 75% of cases where
the Mouw and Yoder (2010) model predicted microplankton dom-
inance in the Northwest Atlantic, with highest correspondence in high
chlorophyll locations. Thus, while the S04 algorithm has been widely
applied and the outputs analyzed, the model itself has not been in-
dependently validated with a bio-optical dataset of in situ measure-
ments including IOPs, apparent optical properties (AOPs), pigments,
and microscopy.

In this study, we use an extensive dataset of bio-optical properties
measured at the Martha's Vineyard Coastal Observatory (MVCO), which
falls in the Northwest Coastal Shelf province within the Northwest
Atlantic Zone, to evaluate the performance of the S04 model. The
MVCO area features a systematic seasonal cycle with diatom-dom-
inance in winter and smaller, mixed phytoplankton communities in
summer (Sosik and Olson, 2008; Sosik et al., 2010; Peacock et al., 2014;
Hunter-Cevera et al., 2016). The measurements at this site are well
suited to test the model: the MVCO dataset includes optical measure-
ments (reflectance, component absorption and backscattering) to
evaluate functional relationships and algorithm parameters, as well as
metrics describing the phytoplankton community (High Performance
Liquid Chromatography or HPLC phytoplankton pigments, flow cyto-
metry and cell imaging) to test the model outcome.

To evaluate the appropriateness of this study site for validation of
the S04 model, we compared the reflectance-ratio-to-chlorophyll re-
lationships at MVCO (Fig. 1A) to other Case 1 sites found in the NASA
bio-Optical Marine Algorithm Dataset (NOMAD). Case 1 was originally
defined to refer to green waters for which the reflectance spectrum
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cannot be explained by simply the optical properties of pure water and
particle backscattering, but for which the absorption is dominated by
phytoplankton pigments rather than inorganic particles. In addition,
Morel and Prieur (1977) acknowledged that “dissolved yellow sub-
stance is present in variable amounts and also contributes to absorp-
tion.” However, over time, this metric has developed new nuance and
implications that have resulted in misuse of the term or classification in
some cases (Mobley et al., 2004 and references therein). To avoid
complication, we here adhere to the definition that Case 1 waters are
not just open ocean waters, waters with low chlorophyll concentrations
(for instance, the range in chlorophyll concentration associated with
Morel and Prieur's, 1977 Case 1 waters is 0.2 to 18.1 mgm−3), waters
without variation in CDOM (colored dissolved organic matter) ab-
sorption and non-algal particle absorption and scattering, or any com-
bination of the above. Case 1 waters can be green, coastal waters with
high chlorophyll concentration and varying concentrations of CDOM
and NAP (Sauer et al., 2012; Antoine et al., 2014).

The S04 model was designed for Case 1 waters, but the sampling
locations for model construction and validation vary from very near-
shore to open ocean (Fig. 2A). While MVCO is a very nearshore site, the
blue to green reflectance-ratio-to-chlorophyll relationships observed at
MVCO fit well within the range of relationships observed across a
global compilation of Case 1 sites. While the NOMAD dataset has been
applied extensively for bio-optical algorithm development and valida-
tion (i.e., O'Reilly et al., 1998, Morel and Gentili, 2009, Lee et al., 2010,
Maritorena et al., 2010, Sauer et al., 2012, Siegel et al., 2013, Werdell
et al., 2013, etc.), the dataset overrepresents eutrophic and very coastal
waters (Werdell and Bailey, 2005). Thus, we chose to use a Case 1
subset of the dataset as defined using the metric of Lee and Hu (2006).
This method aims to classify sites as Case 1 or Case 2 based on the range
of the reflectance ratio values, allowing for some spread around a mean
value due to the variability of CDOM and non-algal particle absorption
and scattering in natural waters. This spread can also be attributed to
phytoplankton community composition, as it is in the S04 approach (for
more consideration of this concept, please see the Discussion). The Lee
and Hu (2006) method was also applied to our observational datasets:
at MVCO, 50% of the data points used in this analysis (13/26) were
considered to be Case 1 as defined by Lee and Hu (2006); in Harpswell
Sound, 26% of the data points (6/23) were considered Case 1.

Despite every indication that the original S04 model should fit the

data collected at MVCO given the range of data found at the site
compared to other Case 1 sites (Fig. 1A), initial evaluation demon-
strated that the model did not fit the MVCO observations. Thus, we used
data collected at MVCO for a series of successive re-parameterizations
of each component part of the original reflectance model using data
collected at MVCO, with the goals of identifying which component was
responsible for the poor fit and improving the fit between the model
and the measured optical data at MVCO. The refined model (hereafter
designated as K18) was then validated with data collected at the
Bowdoin Buoy in Harpswell Sound (bowdoin.loboviz.com), a tidally-
dominated productive inlet in eastern Casco Bay, Maine with similar
optical complexity and phytoplankton community composition to
MVCO (Chase et al., 2009) but a notably different range of blue to green
reflectance-ratio-to-chlorophyll than what is found at MVCO (Fig. 1B).

In validating, re-parameterizing and re-formulating, and re-vali-
dating the S04 model with data collected in the region for which the
model was originally developed, we demonstrate the importance of
rigorously testing any model with in situ data before widespread model
application. The resulting bio-optical algorithm combines empirical
observations and measurements of biological and optical properties
with knowledge of the underlying oceanographic system to create a
new model, K18, that better fits the measured data. The process of re-
fining the S04 model highlights the difficulty of attributing variability
in the reflectance ratios measured by satellites to only one component
of the ocean, here the dominant phytoplankton group, when in fact this
variability can be attributed to multiple sources in most ocean ecosys-
tems.

2. Methods

2.1. MVCO

To evaluate and then re-parameterize and refine the S04 model, we
relied on an extensive dataset of biological and optical parameters,
including IOPs, AOPs, pigments, flow cytometry, and automated mi-
croscopy at MVCO. Here, the spatial context of data used to construct
and validate the S04 model is replaced by a temporal context at MVCO,
as the data were collected in all seasons and show a large dynamic
range over the ten year time series used here (Zhang et al., 2015;
Supplementary material). The instruments used in this study were

Fig. 1. Relationship between R490:R555 and chlorophyll-a. NASA OC2vS model for the SeaWiFS sensor (black; https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/) and
original S04 models for mixed phytoplankton populations (blue) and diatom-dominated populations (red). The models overlay all data from the NASA bio-Optical
Marine Algorithm Dataset (NOMAD, in black; Werdell and Bailey, 2005); a Case 1 subset of NOMAD (defined following Lee and Hu, 2006, in grey); and data
measured at (A) MVCO and (B) Harpswell Sound (in green). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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deployed on the Air-Sea Interaction Tower (ASIT) at MVCO, which is
located 3 km south of the island of Martha's Vineyard (41°19.5′N,
70°34.0′W; Fig. 2) in 15m. deep water, which is between 4 and 15
optical depths, depending on wavelength and range of optical proper-
ties. To compare data collected from 2004 to 2015 on different in-
struments over a similar scale, a matchup routine was used to find data-
points that had been sampled within the same 4-hour window. For
details on sample numbers used in each analysis resulting from these
matchups, see Supplementary material Section S2; for details on un-
certainty in measurements, see Supplementary material, Section S6,
Table S3. Since the original S04 model is designed for application to
satellite remote sensing ocean color data, we only used samples col-
lected in the near surface (< 5m).

The data products at MVCO used in this study include the following:
remote sensing reflectance, discrete sample absorption, in situ mea-
sured backscattering coefficients, discrete phytoplankton pigments
from HPLC analysis, and in situ flow-cytometry/cell imaging.

The AERONET-OC above-water radiometry system (i.e., SeaPRISM)
measures downwelling irradiance and upwelling radiance just above
the sea surface, which are used to compute remote sensing reflectance
(Zibordi et al., 2010). The SeaPRISM has a full angle field of view of
1.2°. As mounted on the ASIT, it takes measurements from ~10m above

the water, allowing for minimal atmospheric interference. The instru-
ment is configured to measure reflectance at eight distinct wavelengths:
412.7 nm, 442 nm, 490.9 nm, 531.4 nm, 555.1 nm, 668.1 nm,
870.2 nm, and 1019.8 nm. Raw data are uploaded to the AERONET data
system maintained at NASA's Goddard Space Flight Center and cali-
brated, quality controlled standard products were subsequently down-
loaded from https://aeronet.gsfc.nasa.gov. As the SeaPRISM measure-
ments can be impacted by surface reflectance, we only used
measurements between 10:00 and 14:00 local time for the matchup.
Reflectance at MVCO was not measured at the same wavelengths as
were used to construct the S04 model. While the use of bluer wave-
lengths (490 nm compared to 510 nm and 442 nm compared to 490 nm)
could make the ratios more vulnerable to the impacts of CDOM ab-
sorption, which decreases exponentially with wavelength, the use of
different wavelengths does not change the critical feature of significant
separation between the mixed and diatom-dominated model curves
(Fig. 3).

Absorption coefficients were determined spectrophotometrically on
discrete samples collected approximately monthly at the ASIT. Particles
(typically from 500mL water sample) were collected on GF/F glass
fiber filters and stored at liquid nitrogen temperatures until analysis on
a dual beam spectrophotometer (Perkin Elmer Lambda-18) equipped

Fig. 2. (A) Sampling locations of Sathyendranath et al. (2004) where red points are diatom-dominated sites and blue points are mixed populations. The locations of
MVCO and Harpswell Sound are in pink; detailed area shown in (B) outlined in black. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 3. Modeled relationships between
ratios of reflectance and chlorophyll-a
concentration. (A) Blue-to-green ratio
and (B) blue-to-red ratio at wave-
lengths used in the original S04 model
(solid black=mixed; dashed
black=diatoms) and at MVCO mea-
sured wavelengths (blue=mixed;
red= diatoms). (For interpretation of
the references to color in this figure
legend, the reader is referred to the
web version of this article.)
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with 60-mm integrating sphere attachment. Filters were mounted on
quartz plates at the entrance to the sphere and scanned with a hydrated
blank filter in the reference beam to determine total particle absorption
(ap). Following the method of Kishino et al. (1985), absorption by
phytoplankton (aph) and non-algal particles (aNAP) were separated by
rescanning the sample filter after extraction of pigments with methanol.
In all cases, the spectrophotometer was autozeroed with blank filters in
both beams prior to sample scans. The average optical density in the
range 780–800 nm was subtracted from each sample and the pathlength
amplification factor of Mitchell (1990) was applied to correct for filter
effects. Separate samples were collected for determination of absorp-
tion by colored dissolved organic matter (aCDOM). Filtrate (0.2 μm) was
stored in refrigerated detergent-soaked, acid-washed glass bottles until
spectrophotometric analysis in 10-cm cuvettes, with pure water (Milli-
Q) in the reference beam (after autozero with pure water in both sample
and reference cuvettes). Samples were warmed to room temperature
before analysis and care was taken to maintain sample water and re-
ference water at the same temperature. A blank scan (pure water in
both cuvettes after autozero) was subtracted from each sample spec-
trum and then the average optical density in the range 660–670 nm was
subtracted to minimize any residual effects of temperature and salinity
differences.

Additional discrete water samples were taken at the ASIT for de-
termination of phytoplankton pigment concentrations (chlorophylls
and accessory pigments). Particles were collected on GF/F filters and
stored at liquid nitrogen temperatures until HPLC analysis by the NASA
GSFC field support group (https://oceancolor.gsfc.nasa.gov/fsg/hplc).
We used the CHEMTAX matrix inversion method (Mackey et al., 1996)
to estimate the contribution of diatoms to the total chlorophyll-a con-
centration. Measured pigment concentrations (chlorophyll-a, chlor-
ophyll b, chlorophyll c1+ c2, chlorophyll c3, 19′‑hexanoyloxyfucox-
anthin, 19′‑butanoyloxyfucoxanthin, fucoxanthin, peridinin,
alloxanthin, diatoxanthin+ diadinoxanthin, lutein, neoxanthin, prasi-
noxanthin, violaxanthin, and zeaxanthin) were provided as input, along
with initial taxon-specific pigment ratios as in Pan et al. (2011). The
algorithm searches for optimal pigment ratios and associated taxon-
specific pigment concentrations for diatoms, cryptophytes, cyano-
phytes, two types of dinoflagellates, two types of haptophytes, and two
types of chlorophytes. To minimize problems associated with local
minima (Latasa, 2007), we ran the CHEMTAX optimization 108 sepa-
rate times with random noise (± 35%) added to the initial pigment
ratios, then computed the average of the 10 solutions with the lowest
overall residuals. Inspection of the residuals confirmed an absence of
seasonal- or annual-scale biases that would warrant splitting the dataset
to allow for non-stationary pigment ratios.

A HydroScat-6 sensor (HOBI Labs) was deployed at 4m depth at the
ASIT for in situ determination of backscattering coefficients (bb) at
multiple wavelengths (420 nm, 442 nm, 470 nm, 510 nm, 550 nm,
590 nm, and 700 nm). The sensor was regularly calibrated at HOBI Labs
Inc. prior to 2012 and at HOBI Instrument Services LLC thereafter.
Calibrated backscattering coefficients were computed with HydroSoft
(version 2.95). Hourly averaged values were computed from observa-
tions made at 15-second intervals.

In situ characterization of the phytoplankton community was car-
ried out by automated flow cytometry with FlowCytobot (FCB; Olson
et al., 2003) and imaging-in-flow cytometry with the Imaging Flow-
Cytobot (IFCB; Olson and Sosik, 2007). FCB observations were used to
count and characterize pico- and small nanoplankton (2–10 μm) and
IFCB was used to count and characterize large nano- and microplankton
(> 10 μm), including separation of diatoms from other taxa (Sosik and
Olson, 2007). Biomass of each cell (or chain/colony in the case of many
diatoms) was estimated by converting bio-volume to carbon according
to the meta-analysis of Menden-Deuer and Lessard (2000), which
showed that a single relationship holds for all cell types (pico-cyano-
bacteria and protists) except large diatoms. Biovolume for each cell (or
chain/colony) was determined from light scattering measurements for

FCB data (calibrated with a wide range of cultured cell types; Olson
et al., 2003) and from image analysis for IFCB data (Moberg and Sosik,
2012). In a given sample, diatom carbon was determined by summing
the contributions of individual diatom cells and colonies/chains. The
diatom fraction of total phytoplankton carbon was then computed by
dividing by the corresponding sum for all phytoplankton.

2.2. Harpswell Sound

The K18 model was further validated with data collected from 2008
to 2016 in productive Harpswell Sound in eastern Casco Bay, Maine at
the Bowdoin Buoy (GoMICOOS Buoy D), which features optically
complex Case 2 waters (Fig. 1B). Separate data types collected in
Harpswell Sound were matched to find data-points sampled on the
same day at the same time, from depths above 5m. The data products
from Harpswell Sound used in this study include reflectance and HPLC
phytoplankton pigments. As the goal with the Harpswell Sound dataset
was to validate and not retune the model, absorption and back-
scattering observations, while available, were not used.

Upwelling radiance (Lu) and downwelling irradiance were measured
with a hyperspectral radiometer buoy (HTSRB; Satlantic Instruments,
Sea-Bird Scientific), which was deployed on weekly cruises in
Harpswell Sound each summer. The buoy was deployed off the sunny
side of the ship at a distance of at least 3 optical depths away to avoid
both ship shadow and ship reflection. Lu is measured 0.63m below the
base of the buoy and was propagated to the surface with an estimate of
spectral diffuse attenuation, Ku(λ). As we did not have profiles of
Lu(λ,z), we assumed that Ku(λ) could be approximated by the diffuse
attenuation of downward irradiance, which we estimated from Morel
et al. (2007).

HPLC-based pigment concentrations and CHEMTAX-based diatom
fraction were determined in the same manner as described above for
MVCO.

3. Results

3.1. Defining diatom dominance

As our validation of the model output depends on the identification
of diatom-dominated waters, the method used to determine phyto-
plankton taxonomy could significantly impact the model validation.
The gold standard for quantifying phytoplankton taxonomic composi-
tion is microscopy and cell imaging. However, optically-based models
such as S04 rely on light absorption features that arise due to both the
taxonomically distinct pigment composition between phytoplankton
groups and the degree of pigment packaging in cells. It may therefore
be preferable to validate a bio-optical model with an optical proxy for
phytoplankton taxonomy: for the S04 model, an appropriate proxy is
the shape of the phytoplankton absorption spectra in response to
diatom-dominated communities versus mixed phytoplankton commu-
nities (Fig. S2). These modeled spectra should capture the pre-
dominance of fucoxanthin as a biomarker pigment to indicate the
presence or absence of diatoms, as well as the large cell size and high
chlorophyll-to-carbon ratio of typical diatom cells, which leads to a
higher degree of pigment packaging and thus a flattened absorption
spectrum. As phytoplankton pigments are the agents that drive ab-
sorption, they are the first proxy for absorption. Pigments are also
taxonomically distinct to first order and serve as proxies for taxonomy.
Thus, pigments provide the analytic link between the modeled optical
property (absorption) and the measured phytoplankton taxonomy
(imaging).

We compared three pigment proxies for diatom fraction to the
carbon-based estimate from FCB and IFCB at MVCO. The first pigment
proxy is a simple fucoxanthin-to-chlorophyll-a pigment ratio (Fig. 4A).
The second pigment proxy is the one from the S04 method, which
considers both the ratio of fucoxanthin-to-chlorophyll-c3 and
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chlorophyll-c3-to-chlorophyll-a to help separate diatoms from prym-
nesiophytes, which also contain fucoxanthin (Fig. 4B). The third proxy
uses a full suite of pigments through the CHEMTAX inversion (Fig. 4C).

This comparison between pigment proxies and the FCB/IFCB data
shows that while the fucoxanthin to chlorophyll ratio proxies exhibit a
linear relationship to the FCB/IFCB diatom carbon estimates with
smaller spread in the data, CHEMTAX correctly identifies the most
diatom-dominated points that were also identified as> 50% diatoms
by flow cytometry and imaging. Thus, we chose to use CHEMTAX as our
method of diatom identification for model validation. There are still a
number of points that are identified as diatom-dominated by CHEMTAX
but are< 50% diatoms by the fraction of phytoplankton carbon
(Fig. 4C). For the purposes of this reflectance-based model, it was
preferable to use a pigment-based proxy (i.e., pigments) to identify
diatoms for validation. However, the discrepancy between pigment-
based methods and FCB/IFCB data suggests caution when choosing a
method for phytoplankton community identification, as well as a source
of potential uncertainty in the process of model validation. For more
consideration of these issues, please see the Discussion.

3.2. Original model performance

To test the original S04 model performance at MVCO, we first re-
constructed the model as described explicitly in Sathyendranath et al.
(2004) with the reflectance ratio curves for R510:R555 and R490:R670
computed as a function of chlorophyll (Supplementary material, Sec-
tion S1) for diatom-dominated or mixed phytoplankton populations
(i.e., phytoplankton populations dominated by a group other than
diatoms or with no dominant group). We then modified the S04 model
at the wavelengths measured at MVCO and constructed reflectance
ratio curves for R490:R555 and R442:R670 (Fig. 3). Next, we compared
these curves to observations at MVCO. For each of the MVCO matchup
data points, we plotted the observed reflectance ratios against HPLC-
determined chlorophyll-a concentration with the points color-coded
according to the CHEMTAX-determined diatom fraction (Fig. 5); this
approach acknowledges a continuum of diatom fraction rather than
simply designating a point “diatom-dominated” or “mixed” (as was
done in S04). This method was chosen to elucidate trends in the model
that might be concealed by the binary approach. However, it does not
preclude binary analysis as values greater than or less than 50%

Fig. 4. Comparisons between pigment-based metrics for diatom fraction and the carbon-based estimate from measurements of phytoplankton at MVCO. (A)
Fucoxanthin-to-chlorophyll-a ratio where fuco:chl > 0.4 is defined as diatom dominated, in red (16 points); fuco:chl < 0.4 is mixed, in blue (78 points). (B)
Fucoxanthin-to-chlorophyll-a ratio where the S04 metric is applied: only points with fuco:chl > 0.4 and chlc3:chl < 0.02 are defined as diatom dominated (red; 7
points) and all other points are mixed (blue; 87 points). (C) HPLC CHEMTAX where>50% diatoms determined from CHEMTAX are in red (38 points), ≤50%
diatoms are in blue (56 points). Dashed lines show the threshold of diatom dominance in each case. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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diatoms (green symbols) are easily identified.
We quantitatively compared the difference between the measured

data and the model curves by considering a continuum of diatom
dominance between the two model curves, with the blue mixed curve
representing the reflectance ratio associated with 0% diatoms and the
red diatom-dominated curve representing the reflectance ratio asso-
ciated with 100% diatoms. Each validation data point has a measured
chlorophyll concentration, a measured reflectance ratio, and an asso-
ciated diatom fraction determined from CHEMTAX. These data were
used to linearly interpolate between the two extreme curves to find the
corresponding reflectance ratio value at a given diatom fraction and
chlorophyll concentration. Finally, the predicted reflectance ratio value
was compared to the measured reflectance ratio value in the form of the
root mean square deviation (RMSD):

=
∑ −= R R

n
RMSD

( )i
n

obs pred1
2

(1)

where n is the number of samples in the validation dataset, Robs is the
observed reflectance ratio value, and Rpred is the predicted reflectance
ratio value. The RMSD was calculated for both reflectance ratios
(Table 1). We chose to express the validation statistic in terms of the
difference between measured and modeled reflectance ratio values ra-
ther than measured and modeled diatom fractions as the reflectance

value was measured directly and the associated diatom fraction was
modeled using CHEMTAX. However, as this work is an exercise in va-
lidation, we feel it is important to note that there are associated un-
certainties with both the measured data (see Supplementary material,
Section S6, Table S3) and the models used to describe the data.

The modified S04 model (i.e., different wavelengths) overestimates
the magnitude of the reflectance ratios at low chlorophyll concentra-
tions and underestimates the magnitude at high chlorophyll con-
centrations. This result indicates that the water at MVCO is less blue (or
greener or redder with the same blue reflectance) than the S04 model
predicted at low chlorophyll concentrations (Table 1), implying
stronger absorption and/or weaker scattering of blue light at MVCO
than predicted by the model.

To investigate the source or sources of optical variations between
the MVCO and S04 relationships between reflectance ratios and
chlorophyll-a, we analyzed each term in the model equations (Eqs.
(S4)–(S13)) in comparison with the extensive MVCO validation dataset.
The contributions of Raman scattering (Eqs. (S14) and (S15)) to re-
flectance are well understood and can be described with a robust
analytical function (Marshall and Smith, 1990). In addition, the con-
tribution of Raman scattering to total reflectance is on the order of
2–10% (Westberry et al., 2013). Thus, we focused on rebuilding the two
essential components of the elastic reflectance term: absorption and
backscattering coefficients.

3.3. Phytoplankton absorption

The difference in the two reflectance ratio curves generated by the
S04 algorithm relies on the difference in magnitude between aph for
waters dominated by diatoms compared to waters with mixed phyto-
plankton communities (Figs. S2; 6B and D). At MVCO, the mean mea-
sured aph for diatom-dominated (> 50% diatoms from CHEMTAX) and
mixed community conditions separate by both magnitude and spectral
shape (Fig. 6A and C). The mean measured spectra at MVCO are sig-
nificantly different from each other (two-sample t-test, p < 0.01).

At MVCO, absorption per chlorophyll is lower for diatoms than for
mixed phytoplankton taxa by about a factor of two, depending on
wavelength (Fig. 6A). The spectral shape also varies (Fig. 6C): while the
absorption spectra are quite similar in the green wavelengths, where
absorption is minimum, the spectra are significantly different in the
blue wavelengths (400–475 nm; two sample t-test, p < 0.001) and in
the red wavelengths (600–700 nm; two sample t-test, p < 0.01). Mixed
phytoplankton communities absorb much more in the blue relative to
the red. The differences between the shapes of the curves can be
exploited to determine community structure with optical methods, as

Fig. 5. Relationships between remote sensing reflectance ratios (A) R(490)/R(555) and (B) R(443)/R(668) and chlorophyll-a concentration. The original S04 model
results for diatom-dominated and mixed communities are shown as red and blue lines, respectively. Observed values obtained from matchups at MVCO (26 total
points) are shown by symbols colored coded by CHEMTAX-determined diatom fraction. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Table 1
Root mean squared deviations (RMSD) between K18 and S04 model results and
MVCO measurements shown in Fig. 10. The “Model adjustment” column refers
to the term that was altered for that model run: for instance, in the “aph”
column, only the phytoplankton absorption term was changed from the original
S04 model; all other terms remained the same.

Model adjustment RMSD
490:555

Percent change
from S04

RMSD
442:668

Percent change
from S04

S04 model
unchanged

0.2606 N/A 2.7581 N/A

aph 0.1765 32.29 1.9325 29.93
ay 0.0828 68.22 0.7943 71.20
High chl bbp 0.1749 32.91 1.3707 50.30
Low chl bbp 0.1619 37.89 1.2765 53.72
aph+ ay 0.1031 60.42 0.8419 69.47
aph+high chl bbp 0.1148 55.97 1.0195 63.04
aph+low chl bbp 0.1078 58.63 1.0027 63.60
ay+high chl bbp 0.1103 57.68 1.1741 57.43
ay+low chl bbp 0.1161 55.45 1.2853 53.40
Sum− high chl 0.1349 48.26 1.2287 55.45
Sum− low chl 0.1408 45.97 1.3364 51.55
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proposed by Sathyendranath et al. (2004), as reflectance will vary both
in magnitude and spectral shape depending upon both the concentra-
tion and composition of the phytoplankton community (Fig. S2; Prieur
and Sathyendranath, 1981; Roesler and Perry, 1995; Bricaud et al.,
1995).

Notably, the mean measured chlorophyll-specific phytoplankton
absorption spectra (aph∗) at MVCO for both diatom-dominated and
mixed phytoplankton at MVCO were significantly different from the
S04 modeled spectra (Fig. 6; two-sample t-test: mixed p < 0.05,
diatom p < 0.01). The S04 model parameterizes the phytoplankton
absorption coefficient as a function of chlorophyll but assumes em-
pirical relationships that do not exist at MVCO (Eq. (S5); Fig. S2). We
thus compared the results of optimization for multiple models for
phytoplankton absorption, including a re-parameterization of the S04
model and the Ciotti et al. (2002) model. Ultimately, the best fit was the
Bricaud et al. (1995, 2004) model for phytoplankton absorption, which
uses wavelength-specific power-law relationships between absorption-
to-chlorophyll to explain variations in pigment packaging and capture
biomass-dependent variations in the spectral shape of the phyto-
plankton absorption coefficient over a global range of chlorophyll
concentrations.

The Bricaud et al. (1995, 2004) model has been applied with success
in coastal regions, including the Northwest Coastal Shelf province
(Devred et al., 2006). As with the S04 model, phytoplankton absorption
is chlorophyll-dependent but features two wavelength-dependent
parameters defined over the spectrum of 400 nm to 700 nm. One
parameter, A, defines the magnitude of the specific absorption and the

other parameter, B, provides the non-linear dependence on chlorophyll
concentration (reflecting impact factors such as variation in pigment
packaging and accessory pigments). We use the Bricaud et al. (1995)
model for the chlorophyll-specific absorption coefficient (aph∗):

= ∗∗a A Chlph
B (2)

where aph∗ has units of m2mg−1 chl-a and the parameters A and B are
unitless. A and B were quantified by a non-linear least-squares opti-
mization approach to match the shape of the measured spectra at
MVCO (mixed and diatom-dominated A and B values are given in Table
S2). The resulting re-formulated aph∗ spectra following the approach of
Bricaud et al. (1995, 2004) were statistically identical to the mean
measured spectra (two-sample t-test: mixed p≫ 0.999, diatom p=1).
We compared the measured relationship between the phytoplankton
absorption coefficient at 442 nm and chlorophyll-a to both the S04
model and the Bricaud et al. (1995) model: the Bricaud et al. (1995)
model resulted in a better fit with the measured data (mixed r2= 0.85,
diatom r2= 0.75, both p≫ 0.999; Fig. 7). Thus, these re-formulated aph
coefficients were incorporated into the K18 model.

3.4. Absorption by CDOM and non-algal particles

The second component we investigated in the S04 model is the
absorption by yellow substances (CDOM plus non-algal particles or
NAP). The S04 model produces two aph coefficients (diatom-dominated
and mixed) and therefore two associated ay coefficients (see
Supplementary material, Section S1 for details). Thus, for the same

Fig. 6. Mean chlorophyll-specific phytoplankton absorption (aph∗; phytoplankton absorption normalized to chlorophyll-a concentration) for mixed (blue) and
diatom-dominated (red) phytoplankton communities; (A) measured at MVCO; (B) modeled as in S04. Mean aph normalized to the area under the spectrum (< aph>)
for mixed and diatom-dominated phytoplankton; (C) measured at MVCO; (D) modeled as in S04. Error bars show±one standard deviation from the mean for the
range of chlorophyll concentrations measured at MVCO. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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chlorophyll concentration, the model predicts different concentrations
of dissolved material in the water depending on the phytoplankton
community. This assumption implies that mixed populations have as-
sociations with greater CDOM concentrations compared to diatoms.
Ecologically, diatoms dominate earlier in the seasonal succession and
mixed populations dominate later, when more grazing and trophic
transfer may enhance CDOM.

Absorption by CDOM and NAP were measured separately at MVCO,
which allows the variability of the sum or the components (dissolved
and particulate) to be examined. In keeping with S04, we first con-
sidered the two components together (ay= aCDOM+ aNAP) as a function
of chlorophyll: the measured values were significantly different from
the S04 modeled absorption curves (two-sample t-test: mixed < 0.01,
diatom p < 0.01). The lack of correlation between ay and chlorophyll-
a is best understood by examining the two components independently.
Across all points at MVCO, aCDOM does not exhibit significant correla-
tion with chlorophyll concentration (Fig. 8A). Most of the aCDOM at
440 nm observations fall within a narrow range of values; thus, for the
K18 model, we selected the mean value of 0.13m−1 (± 0.05) to re-
present the aCDOM coefficient at 440 nm (following Eq. (S6)).

In contrast, we found that aNAP could be described by a linear
function with chlorophyll concentration (Fig. 8B), albeit with sub-
stantial unexplained variance. As a first order description, we fit two
linear regressions (mixed r2= 0.28, p < 0.001; diatom r2= 0.13,
p < 0.01):

= ∗ +a Chl(440) 0.009 0.033NAP Mixed (3)

= ∗ +a Chl(440) 0.0074 0.062NAP Diatom (4)

We combined the mean aCDOM value at 440 nm with aNAP at 440 nm
from Eqs. (3) and (4) to provide the reference value (at wavelength of
440 nm; Eq. (S7)) needed for the exponential ay model (Eq. (S6)):

= + ∗ − −a λ a a e( ) [ (440) (440) ]y Mixed CDOM NAP Mixed
λ[ 0.014( 440)] (5)

= + ∗ − −a λ a a e( ) [ (440) (440) ]y Diatom CDOM NAP Diatom
λ[ 0.014( 440)] (6)

The slope of the exponential decay (−0.014) is consistent with the

observed values. These final re-parameterized ay coefficients were in-
corporated into the K18 model.

3.5. Particle backscattering

Particle backscattering at 660 nm, bbp(660), and chlorophyll-a con-
centration are uncorrelated (r2= 0.10) in the MVCO dataset.
Separating the points based on phytoplankton community structure did
not change this result (mixed r2= 0.12, diatom r2= 0.01), nor did the
wavelength of backscattering (Fig. 9A). Furthermore, bbp at MVCO ex-
hibited significantly larger values than predicted by the Sathyendranath
et al. (2004) bbp model used in S04 (Eq. (S10)). That model appears to
represent a lower limit to the MVCO data (Fig. 9A).

To better understand the variability in the magnitude of bbp at
MVCO, we examined the relationships between bbp(550) and other
measured physical and biological properties, including day of the year
and dominant taxa. We found that community structure and season
explained little of the variability in measured bbp, which we thought
was likely due to resuspension. However, we were not able to explain
the variability in bbp with resuspension, as bbp was uncorrelated with
tidal phase or season (i.e., winter storms). On scales of minutes to years,
the magnitude of bbp at MVCO at any given wavelength varies by a
factor of two to four. Notably, the variation in backscattering observed
over short timescales of minutes to hours is on the same order as sea-
sonal differences, implying a high degree of patchiness. Over seasonal
timescales, high phytoplankton biomass is generally associated with
higher backscattering but with a large uncertainty.

In finding no clear driver for backscattering based upon phyto-
plankton composition or physical dynamics, we explored a driver based
on other biological factors. We noted that bbp and chlorophyll appear
temporally lagged. If we consider that particulate matter is generated
mainly by phytoplankton blooms at MVCO, backscattering by particu-
late matter may be out of phase with chlorophyll-a, which is used as a
proxy for phytoplankton biomass. While chlorophyll-a is related to
phytoplankton biomass, bbp depends on all particle types, many of
which are likely generated during bloom decline or associated with
phenomena such as resuspension of senescent blooms.

We used the ratio of chlorophyll to phaeophytin (measured with
HPLC) as an ecological proxy for bloom stage to explore the temporal
mismatch between particle backscattering and chlorophyll concentra-
tion. Phaeophytin is a degradation product of phytoplankton pigments,
generally found in higher concentrations in nature as a phytoplankton
bloom comes to its end (Jensen and Sakshuag, 1973). At high chlor-
ophyll-to-phaeophytin ratios, there are little to no phytoplankton de-
gradation products in the water (i.e., a healthy bloom). Most of the
particles in the water are living phytoplankton with high chlorophyll
that absorb more light and scatter little. At lower chlorophyll-to-
phaeophytin ratios, there are more phytoplankton degradation products
in the water, likely associated with grazing and cell death (i.e., a bloom
that is ending). The particles in the water include more dead and de-
caying phytoplankton cells, fecal pellets, and heterotrophic bacteria
with low absorption, but high scattering. Ultimately, we found that a
chlorophyll-to-phaeophytin ratio criterion helped to explain some of
the variance in the measured bbp(550) vs. chlorophyll relationship
(Fig. 9B).

We determined two phytoplankton bloom states (high chlorophyll-
to-phaeophytin, Hchl, and low chlorophyll-to-phaeophytin, Lchl) and
represented the bbp(550) vs. chlorophyll relationship for each condition
with a linear regression (Hchl r2= 0.60; Lchl r2= 0.30):

= ∗ +b Chl(550) 0.0020 0.0066bp
HC

(7)

= ∗ +b Chl(550) 0.0073 0.0058bp
LC

(8)

This method offers an approach appropriate for forward modeling of
remote sensing reflectance ratios as a function of chlorophyll, but in-
verse applications of the S04 and K18 models are also desirable in cases

Fig. 7. Relationship between aph at 442 nm and chlorophyll-a concentration for
diatom-dominated populations (red) and mixed phytoplankton (blue) at MVCO.
Dashed lines show the S04 model; solid lines show the Bricaud et al. (1995,
2004) model parameterized to fit the MVCO observations. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 8. (A) Relationship between aCDOM at 440 nm and chlorophyll-a concentration at MVCO for mixed phytoplankton (blue) and diatom-dominated phytoplankton
populations (red). Thick colored lines show the functional form proposed by S04. Thick black line indicates the mean value of the observations. (B) Relationship
between aNAP at 440 nm and chlorophyll-a concentration at MVCO. Solid lines show least squares linear regression results. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. (A) Relationship between chlorophyll-a concentration and bbp at 550 nm at MVCO. Colors indicate mixed phytoplankton populations (blue) and diatom-
dominated phytoplankton populations (red) determined from HPLC CHEMTAX. Thick black line represents the model fit between bbp(550) and chlorophyll given by
Sathyendranath et al. (2001). (B) Point colors indicate chlorophyll-to-phaeophytin ratio (high chl:phaeo in dark green, low chl:phaeo in light green). Solid lines
represent linear fit. (C) Relationship between remote sensing reflectance (Rrs) at 555 nm and bbp(550) at MVCO. Colors indicate mixed (blue) and diatom-dominated
(red) phytoplankton populations. (D) Colors indicate chlorophyll-to-phaeophytin ratio (high chl:phaeo in dark green, low chl:phaeo in light green). (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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where no chlorophyll-to-phaeophytin ratio is available to select the
appropriate ecosystem state. When an inverse modeling approach is
applied in the case of an input remote sensing reflectance spectrum, our
observations suggest that bbp magnitude can be derived directly from
the relationship with remote sensing reflectance. Specifically, at MVCO
we find (Fig. 9C and D):

= ∗ −b R(550) 3.8 (555) 0.0063bp rs (9)

For the mean spectral slope parameter for particle backscattering, η,
we found a significant difference between diatom-dominated and mixed
conditions (two-sample t-test, p < 0.01). Optimized non-linear least-
squares regression yielded values of 0 for diatom-dominated (i.e.,
spectrally flat backscattering), suggesting mostly large particles and
larger phytoplankton (i.e., diatoms) (Whitmire et al., 2010). The
spectral slope for mixed conditions was highly variable but always
negative, consistent with smaller particles and smaller phytoplankton
(Whitmire et al., 2010). The mean slope was −0.57 ± 0.28, slightly
flatter than the global median reported by Boss et al. (2013).

Our reformulated bbp model encompasses two ecosystem states with
two phytoplankton community structures. The magnitude of bbp(550)
depends on the ecosystem state: high chlorophyll-to-phaeophytin (onset
of bloom) and low chlorophyll-to-phaeophytin (decline of bloom). The
slope of bbp, η, depends on the phytoplankton community:

= ∗⎡
⎣

⎤
⎦

−
b b

λ
(550) 550

bp Mixed bp,

0.57

(10)

= ∗⎡
⎣

⎤
⎦

b b
λ

(550) 550
bp Diatom bp,

0

(11)

These final re-parameterized and re-formulated bbp terms were input
into the K18 model.

3.6. Applying the K18 model at MVCO

We investigated the degree to which re-parameterization and re-
formulation of each absorption and backscattering term affected the fit
of the K18 model to the relationships between reflectance ratios and
chlorophyll observed at MVCO. We did this by changing one term at a
time and maintaining the other terms unchanged from S04. However,
because the ay term depends on the aph term in S04, re-formulating only
the aph term also introduces variations in the ay term. We performed the
analysis for both ecosystem states (high chlorophyll-to-phaeophytin
conditions and low chlorophyll-to-phaeophytin) and phytoplankton
community states (Fig. 10).

For chlorophyll concentrations< 5mgm−3 (where mixed phyto-
plankton taxa were typically observed at MVCO), the re-parameterized
and re-formulated models for phytoplankton absorption and back-
scattering are all significantly different from each other with the ex-
ception of the two backscattering models which are not significantly
different form each other (two-sample t-test; p < 0.01 for all cases,
p= 0.77 for backscattering models). Generally, these refined models
exhibited a similar slope to S04 but with slightly lower reflectance ra-
tios. However, despite the significant differences between the refined
model curves, these new models did not describe the MVCO observa-
tions significantly better than S04 (Fig. 10A and B). The re-para-
meterized models for phytoplankton absorption and backscattering in
the diatom-dominated cases also did not result in significantly different
model shapes compared to S04 and thus did not perform significantly
better than S04 in describing the MVCO observations (Fig. 10C and D).
However, for both mixed populations and diatom-dominated popula-
tions, the re-parameterized ay model resulted in a change in slope that
reflects the distribution of observations better than any of the other
cases (Fig. 10E and F; Table 1). The re-parameterized ay model is sig-
nificantly different from S04 and better describes the relationship in the
MVCO observations for both mixed and diatom-dominated commu-
nities, specifically at low to mid chlorophyll values (≤8mgm−3).

Next, we investigated whether additive re-parameterization yielded
significant improvements to model fit over the single ay improvement
by considering each combination of paired re-parameterized models
and the sum of all. All combinations yielded better fits to the MVCO
observations compared to the original S04 parameterizations (Table 1),
with RMSD reductions exceeding 30% and approaching 60% in some
cases. However, no combination yielded better agreement with ob-
servations re-parameterizing the ay model alone.

3.7. Applying the K18 model in Harpswell Sound

A model cannot be validated with the data used to construct that
model. Thus, although the K18 model was a better fit with the data
measured at MVCO, the generalization of the K18 model can only be
assessed by validation with an independent dataset. We compared both
the S04 model and the K18 model to data collected at the Bowdoin
Buoy, a site in Harpswell Sound in Casco Bay in the eastern Gulf of
Maine that, like MVCO, lies within the Northwest Coastal Shelf pro-
vince, but is much more coastal than MVCO with higher and less
variable CDOM coefficients. While we knew that the original S04 model
would likely not fit the Harpswell Sound data, which lies at the edge of
the Case 1 range (Fig. 1B), we included the S04 model in our com-
parison as a baseline for the performance of the K18 model at a dif-
ferent site.

While MVCO and Harpswell Sound have some general ecological
and oceanographic conditions in common, the optical and taxonomic
data show some differences. The data measured in Harpswell Sound
have a narrower range of chlorophyll-a concentrations, as the data in
Harpswell Sound were only collected during the late spring to summer
season while the data at MVCO were collected year-round and thus
have a larger dynamic range (Supplementary material, Section S4; Fig.
S3). The Harpswell Sound data also have lower overall reflectance ra-
tios than the MVCO data (associated principally with more absorption
by CDOM) and are clearly outside of the range of MVCO and other Case
1 sites (Fig. 1B). While the data at MVCO show a trend in reflectance
ratio as a function of phytoplankton composition, the data at Harpswell
Sound do not show the same trend in diatom dominance with in-
creasing chlorophyll concentration (Fig. 11).

For both diatom-dominated and mixed phytoplankton populations,
each re-parameterization in the K18 model describes the Harpswell
Sound observations significantly better than S04, as the K18 model re-
parameterizations account for higher absorption (by ay) and variable
scattering, which changes the slope of the modeled relationships to
better fit the measured Harpswell Sound data (Fig. 11). The best fit
version of the K18 model at Harpswell Sound was again the model with
only a re-parameterized ay term. While the K18 model was tuned with
the absorption and backscattering coefficients measured at MVCO, the
resulting model represents substantial improvement in fit at Harpswell
Sound as well (Table 2).

Although the observations in Harpswell Sound are different from
the observations at MVCO (Fig. 1), every term in the K18 model that
was re-parameterized to fit the conditions at MVCO fits the Harpswell
Sound data significantly better than the original S04 model (Table 2).

4. Discussion

The S04 model as originally formulated does not accurately predict
the observed variations in phytoplankton community structure at
MVCO (Fig. 5). However, successive re-parameterization and re-for-
mulation of the model components resulted in demonstrable improve-
ments in fit with the K18 model (Table 1). The largest improvement in
the model fit is with the revised ay term. The IOP parameterizations of
the S04 model have been indirectly evaluated in terms of AOP re-
lationships (e.g., Sathyendranath and Platt (1988) for Kd and in
Sathyendranath et al. (2001) for reflectance). Importantly, however,
there have not previously been direct comparisons to observed CDOM
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and NAP absorption (Eqs. (S6) & (S7)). The restructuring of the func-
tions describing CDOM and NAP absorption based on measurements at
MVCO had a significant impact on the overall agreement between the
modeled and observed relationships between reflectance ratios and
chlorophyll-a. CDOM and NAP absorb much more strongly at blue
wavelengths compared to green and red; thus, it is unsurprising that
these re-parameterizations would alter the blue-to-green and blue-to-
red ratios.

Across all points, there is no clear relationship between CDOM

absorption and chlorophyll at MVCO (Fig. 8A), nor between particle
backscattering and chlorophyll (Fig. 9A and B). This site does not ex-
perience regular resuspension or inputs from shore, except in the event
of large storms; there is no river outflow or tidal connection to the
patterns of CDOM absorption (Supplementary material, Section S5, Fig.
S4). CDOM absorption (Fig. S4) and particle backscattering (Fig. 9A and
B) both vary at times either as a function of chlorophyll and in-
dependent of variations in chlorophyll at MVCO, but the site is overall
consistent with Case 1 conditions. However, the variability in these

Fig. 10. Relationship between observed R(490)/R(555) (left panels) and R(443)/R(668) (right panels) and chlorophyll-a concentration at MVCO. Symbol colors
indicate CHEMTAX-determined diatom fraction. The original S04 model for (A, B) diatom-dominated and (C, D) mixed populations are shown as black lines, along
with new model lines where only the parameter indicated in the legend was changed from the published S04 model. (E, F) The best fit model to the MVCO
observations was the re-parameterized ay model; original S04 models shown in dotted lines for comparison.
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relationships suggests that there are times when MVCO represents a
system that would be considered Case 2 by Morel and Prieur (1977),
when CDOM is supplied by a source other than phytoplankton and is
high at low chlorophyll concentrations. At other times, MVCO would be
considered Case 1 by Morel and Prieur (1977), when CDOM varies
directly with chlorophyll concentration and phytoplankton outnumber
other particles (Fig. 1A). While it would not be appropriate to apply the
model results incorporating the revised ay presented here to the entire
Northwest Atlantic, which was the range of the original S04 model, we

suggest that nearshore regions or regions with temporal variation in
CDOM concentration will especially benefit from careful para-
meterization of this variable term.

Our results confirm the importance of local re-parameterization
(and, where necessary, re-formulation) of empirical models and of
quantifying which term has the greatest impact on model parameters.
Compared to S04, CDOM and NAP at MVCO are significant contributors
to the factor-of-two-reduced blue reflectance, and are responsible for
more variations in the blue-to-green or blue-to-red reflectance ratios

Fig. 11. Relationship between observed values of R(490)/R(555) (left panels) and R(443)/R(668) (right panels) and chlorophyll-a concentration at Harpswell Sound.
Symbol colors indicate CHEMTAX-determined diatom fraction. The original S04 models for (A, B) diatom-dominated and (C, D) mixed populations are shown as
black lines along with new model lines. (E, F) The best fit model to the Harpswell Sound observations was the re-parameterized ay model; original S04 models shown
in dotted lines for comparison.
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than are variations in phytoplankton community structure. Application
of the K18 model to a second independent validation dataset collected
in Harpswell Sound showed that the new model improvements ex-
tended beyond MVCO. In fact, the RMSD are smaller for the Harpswell
Sound data (Table 2) than for the MVCO data (Table 1) for every re-
parameterization step. This result validates the effectiveness of the re-
parameterized model terms and shows that they better capture the bio-
optical complexity and variability not just at MVCO but also at another
nearshore site in the same biogeographic province.

Sathyendranath et al. (2004) recommend model tuning to match
local conditions and suggest that future model refinements will be ne-
cessary as the quality of observations and capabilities of technology
improve. Our study shows that the S04 model was indeed greatly im-
proved after re-parameterization and re-formulation to match the
measured conditions at MVCO, a Case 1 site in the same biogeographic
province for which the model was developed. Results with the revised
ay model demonstrate that the K18 model exhibits a better fit to the
data, albeit with reduced distinction between the mixed and diatom-
dominated model curves (Fig. 10E and F). As the goal of the S04 and
K18 models is to identify diatom dominance from other phytoplankton
community states, any reduction in the distinction between the two
model curves complicates this process. While parameterizations of the
component parts of the original model improved the K18 model fit with
the measured data at both sites, the measured phytoplankton commu-
nity structure data at MVCO and in Harpswell Sound emphasize a
fundamental challenge with identifying phytoplankton composition
from the relationship between reflectance ratios and chlorophyll-a.

This challenge can be easily summarized as the biomass effect on
community composition. The differences between the diatom-domi-
nated and mixed populations at MVCO have less to do with differences
in reflectance ratios and more to do with biomass: as is common in
nature, diatom-dominated conditions occur at higher chlorophyll-a
concentrations while mixed communities occur at lower chlorophyll
concentrations. While the PFT community defines the S04 algorithm as
a spectral-response model, the model shows clear trends with changing
biomass: when the original S04 algorithm was applied to satellite
imagery, regions with high derived chlorophyll concentration
(Fig. 12A) were generally predicted to be dominated by diatoms
(Fig. 12B). The model rarely if ever identifies the opposite condition,
when chlorophyll is high but mixed phytoplankton dominate (using the
definition of “mixed” from Sathyendranath et al. (2004) to mean either
no dominant group or dominated by a group other than diatoms, such
as prymnesiophytes). Since this model uses the designation of diatom-
dominated or mixed to determine the chlorophyll concentration, these
two figures are not independent; rather, they show the difficulty of the

model to separate community structure and biomass. The distinctions
between curves based only on a spectral absorption signature between
diatoms and mixed phytoplankton disappears when there are any other
absorbing or scattering components of the water, even if the con-
centration of these components is not higher than phytoplankton (the
definition of Case 1 waters).

Sathyendranath et al. (2004) computed chlorophyll-a concentra-
tions as a function of community structure, using their algorithm to
distinguish diatoms from other phytoplankton (Fig. 12A). The NASA
chlorophyll-a algorithms are designed to derive chlorophyll con-
centration from remote sensing reflectance band ratios (O'Reilly et al.,
1998). The resulting ocean color model curve fits the measured global
data: however, there is substantial variance in the reflectance ratio that
is not described by chlorophyll-a. The S04 model ascribes the varia-
bility in this relationship to differences in phytoplankton community
structure (Fig. 1) when in fact it is controlled by a number of different
inherent optical properties (Dierssen et al., 2006; Dierssen, 2010; Sauer
et al., 2012). The S04 model predicts that for the same measured re-
flectance ratio, points with higher in situ chlorophyll-a concentration
are associated with diatom dominance while lower chlorophyll-a con-
ditions reflect mixed communities.

The observations at MVCO show a gradient of diatom concentration:
the proportion of diatoms increases as chlorophyll concentration in-
creases. However, the data are not separated along the S04 model
curves but rather follow a much flatter slope for which relative in-
variance in the reflectance ratio is associated with an order of magni-
tude increase in chlorophyll concentration and increasing diatom
dominance. Despite re-parameterization and re-formulation of the S04
model to create the K18 model, the measured data do not separate
based on the magnitude of reflectance in a way that would allow a
tuned version of this model to identify phytoplankton composition. The
difference in the in situ chlorophyll-a concentrations associated with
one measured reflectance ratio value at MVCO cannot be attributed
only to phytoplankton community structure. Still, variations in particle
backscattering, CDOM absorption, and NAP absorption at MVCO can
significantly alter the reflectance ratio, in addition to changes in the
chlorophyll concentration and phytoplankton community composition.

Despite the unprecedented spatiotemporal potential of satellite
ocean color algorithms to characterize the phytoplankton community
structure from remote sensing, algorithms should be implemented with
caution and must be validated to quantify the conditions appropriate
for application. A model is only as good as the information used to
develop it: both the measured data and the validation data products
ought to be robust and individually examined in relation to the model
assumptions. The original S04 model provided the first framework for
identifying diatom-dominated regions from satellite ocean color data;
the K18 model builds on this approach to include re-parameterized and
re-formulated input functions based upon measured data, application of
relevant ecological and oceanographic theory, and further validation
with a third independent dataset. Outside of the re-parameterization
and re-formulation of the S04 model, this work suggests that validating
the empirical relationships in all bio-optical models of dominant phy-
toplankton groups is a crucial step that cannot be overlooked and ought
to be undertaken regularly as improved data products and methods
become available.

The exercise of validation can be complicated by uncertainties. In
this case, both general uncertainties associated with the methods used
to evaluate and refine the S04 model (see Supplementary material,
Section S6, Table S3) must be considered, along with the uncertainties
associated with the method of taxonomic identification. The un-
certainties associated with each measurement used for the algorithm
development are relatively small compared to the magnitude of the
measurements. As many of the components considered here are spec-
tral, the associated uncertainty is wavelength dependent, but does not
vary greatly across wavelengths over the set of measurements used.
Furthermore, our selection of linear interpolation to distinguish the

Table 2
Root mean squared deviations (RMSD) between K18 and S04 model results and
Harpswell Sound measurements shown in Fig. 11. The “Model adjustment”
column refers to the term that was altered for that model run: for instance, in
the “aph” column, only the phytoplankton absorption term was changed from
the original S04 model; all other terms remained the same.

Model adjustment RMSD
490:555

Percent change
from S04

RMSD
442:668

Percent change
from S04

S04 model
unchanged

0.1637 N/A 1.0458 N/A

aph 0.1226 25.11 0.9351 10.59
ay 0.0871 46.79 0.6859 34.41
High chl bbp 0.1406 14.08 0.8381 19.86
Low chl bbp 0.1365 16.60 0.7674 26.62
aph+ ay 0.0809 50.58 0.6835 34.64
aph+high chl bbp 0.1049 35.92 0.7756 25.83
aph+low chl bbp 0.1023 37.48 0.7288 30.32
ay+high chl bbp 0.0781 52.32 0.7158 31.55
ay+low chl bbp 0.0763 53.37 0.7586 27.46
Sum− high chl 0.0790 52.86 0.7260 30.58
Sum− low chl 0.0758 53.69 0.7719 26.19
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gradient of diatom dominance between the diatom and mixed phyto-
plankton community composition curves (Figs. 5, 10, 11) represents an
assumption that the reflectance ratio changes linearly with community
composition, or another source of potential uncertainty.

Given the relatively small contribution of measurement error to
overall uncertainty in the algorithm testing, the main source of un-
certainty in this work is the taxonomic identification of diatoms, in part
because the choice of a taxonomic proxy for validation is not
straightforward. It is critically important to consider the method used to
determine taxonomy—in this specific model application, to confirm the
presence or absence of diatoms. Taxonomic characterization of in-
dividual cells (as with cytometry and imaging) is the gold standard for
quantifying the fraction of total phytoplankton biomass that is assigned
to a target group such as diatoms. However, bio-optical models are
based upon the absorption features of phytoplankton pigments, which
are likely more closely related to the concentrations of those pigments
and thus to the pigment-based taxonomic proxies. Thus, there is a
second validation step to quantify the uncertainty between pigment-
and image-based taxonomic composition.

CHEMTAX, the method used here to determine the fraction of dia-
toms in a sample, gave quite different results for diatom identification
when compared to simpler pigment ratio methods. Of the three pig-
ment-based identification methods, CHEMTAX identified the most
diatom dominated points; this method also incorporates the most pig-
ments in its determination of the presence or absence of diatoms in a
sample. The S04 criteria, which involve both the fucoxanthin-to-
chlorophyll-a ratio and the chlorophyll-c3-to-chlorophyll-a ratio, iden-
tified the fewest diatom dominated points in the MVCO data. It removes
many of the points that CHEMTAX identified to be diatom dominated
by associating a fraction of the fucoxanthin in the sample with prym-
nesiophytes (Stuart et al., 2000; Sathyendranath et al., 2004). The re-
lationship between the pigment-based diatom identification and flow-
cytometry carbon-based diatom identification is not the same between
the methods.

Based on these results, we recommend caution in selecting the tool
used for identifying phytoplankton composition for model validation.
The way that phytoplankton composition is defined and the methods
that are used to determine phytoplankton community composition from
in situ data can have a significant impact on the results of a validation
study. For our validation method, we chose a pigment-based proxy due
to the relationships between pigments and phytoplankton absorption
and between absorption and reflectance. This reflectance ratio-based

model aimed to identify diatom dominance, and here we have quanti-
fied the uncertainty in identifying diatoms from pigment-based ap-
proaches compared to flow-cytometric and imaging-based approaches.
These results also suggest that there is a need to develop new metrics
for phytoplankton communities and/or to strengthen methods of
comparisons between existing metrics for community structure.

The reflectance ratio approach used in S04 to determine phyto-
plankton community composition relies heavily on pigment absorption
features that lead to variations in the blue-to-green and blue-to-red
reflectance signals. Variations in blue-to-green absorption are driven to
first order by variations in phytoplankton biomass (Evers-King et al.,
2014), but the presence or absence of other blue absorbing material
(such as CDOM and NAP) additionally influences the blue-to-green
absorption signal (Sauer et al., 2012). These other absorbing materials
may not always co-vary with phytoplankton, even in Case 1 waters, due
to ecological processes accompanying bloom onset and decline. Thus,
taxonomic variations in accessory pigments are often a third order
source of variability that may not be independent of the other two. At
nearshore sites, phytoplankton community structure may be a third
order source of variability more so than at offshore sites.

This variability in the reflectance-ratio-to-chlorophyll concentration
relationship is captured in the spread of points in the NOMAD and
MVCO datasets around the OC algorithm curve (Fig. 1A). While the
reflectance ratio-to-chlorophyll relationships at MVCO fall within the
range of other Case 1 sites (Fig. 1A), this location is quite coastal; un-
surprisingly, the model fit was much improved when CDOM absorption
was better constrained in the model (Table 1). The change in phyto-
plankton biomass concentration drives the ratio, but the variability
around the curve is driven (to second and third order) by variations in
phytoplankton community structure and in other particles and dis-
solved matter. Thus, although the reflectance-ratios-to-chlorophyll re-
lationships at Harpswell Sound fall at the boundary of the range of Case
1 sites (marking it more typically Case 2), the K18 model with an im-
proved CDOM and scattering term better fit the Harpswell Sound data
(Table 2). Finally, the ecological patterns whereby phytoplankton tax-
onomy is not independent of biomass (i.e., blooms are dominated by
diatoms while non-bloom conditions are mixed) further muddle the
interpretation of blue-to-green reflectance variations, as was the case
for MVCO. Any empirical or biomass-dependent model will be chal-
lenged to interpret taxonomy in the presence of these common (yet
complex) optical regimes.

Bio-optical models are notoriously under-validated (IOCCG, 2014)

Fig. 12. (A) Composite image of satellite-derived chlorophyll concentration (Sathyendranath et al., 2004 Fig. 6a) and (B) probability that a phytoplankton population
is dominated by diatoms (their Fig. 4a).
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due to the scarcity of in situ datasets that include IOPs, AOPs, pigments,
and microscopy. This analysis demonstrates the importance of using in
situ data for both sufficient empirical model parameterization and re-
formulation as well as complete model testing and validation. Even if a
model is applied in the geographic region and optical regime for which
it was designed, as in this study, our results show the need for careful
stepwise validation before widespread implementation. We further
demonstrate the difficulty of testing a model meant to discriminate
phytoplankton taxonomy when the methods of validating phyto-
plankton taxonomic identification are also uncertain and poorly con-
strained. Thus, whenever possible, we suggest that independent vali-
dation should be undertaken with in situ bio-optical and taxonomic
data products to uphold the assumptions inherent in the model devel-
opment and compare the model output to measured data.

The applications of satellite ocean color models to identify the
dominant phytoplankton group in the surface ocean naturally go be-
yond ecological surveys: for instance, several studies have implemented
the S04 model in the Northwest Atlantic Zone to diagnose the prob-
ability of diatoms in the surface ocean and then use that information to
examine broader concepts in ecology or trophic modeling (Platt et al.,
2005; Son et al., 2007; Zhai et al., 2008; Platt et al., 2010; Trzcinski
et al., 2013; Budge et al., 2014). Independent validation exercises such
as the one undertaken here can only strengthen the robustness of these
model applications to problems beyond simple classification of phyto-
plankton community structure. Going forward, the ability of satellite
ocean color models to diagnose more complex problems such as the
strength of the biological carbon pump will depend on the capacity of
models to describe the phytoplankton community in the surface ocean.
As we have shown here, that success is highly dependent on re-para-
meterization and re-formulation of existing satellite ocean color algo-
rithms, and development of new models for determining phytoplankton
community structure from satellites, as improved data products and
methods become available.
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Notation

λ wavelength, nm
λe excitation wavelengths for Raman scattering, nm
a(λ) total absorption coefficient, m−1

aCDOM(λ) absorption by chromophoric dissolved organic matter
(CDOM), m−1

aNAP(λ) absorption by non-algal particles (NAP), m−1

aph(λ) absorption by phytoplankton, m−1

aw(λ) absorption by pure seawater, m−1

ay(λ) absorption by particulate and dissolved yellow substances
(summed contributions of absorption by CDOM, aCDOM, and
absorption by non-algal particles, aNAP), m−1

aph∗ chlorophyll-specific phytoplankton absorption,
m2mg chlorophyll-a−1

bb(λ) total backscattering coefficient, m−1

bbw backscattering by pure seawater, m−1

bp(λ) particle scattering coefficient, m−1

bbp particle backscattering coefficient, m−1

Chl concentration of chlorophyll-a per volume, mg chlorophyll-
am−3

Kd diffuse attenuation of downward irradiance, m−1

Rrs(λ) remote sensing reflectance, sr−1

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.rse.2018.08.010.
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